d

CLOSED Loor PESIGN e

CLD BF70x CDC Library v.1.3 Users Guide

Users Guide Revision 1.3

For Use With Analog Devices ADSP-BF70x Series Processors

Closed Loop Design, LLC

748 S MEADOWS PKWY STE A-9-202
Reno, NV 89521
support@cld-llc.com

mailto:support@cld-llc.com

Table of Contents

DISCIAIMET ...t b b bbbt bt bbb e e et et b bbbt r e 4
INEFOTUCTION ...t bbbttt bbbt nn et 4
USB BACKGIOUN ...ttt b et b b b 4
CLD BF70x CDC Library USB Enumeration FIOW Chartccccocveiiieiiiiiiie e 5
CLD BF70x CDC Library Bulk OUT FIOW Chart..........ccoiiiiie e 7
CLD BF70x CDC Library Bulk IN FIOW Chart.........cccccoveiiiiiie i 8
CDC Abstract Control Model BaCKGrOUNG............oouiiiiiiiiicieieeeese e 9
CDC Notifications Interrupt IN ENPOINT........cooiiiiiiiie e 9
CDC Abstract Control Model Control ENdpoint REQUESESciveieiiiieieieciesie e 10
DIEPENUEINCIES ...ttt bbbt bbb e bbb bbbt et n e bbb e n e n e 19
Y T aaTo] YA oTo 11 0]]] PSSR 19
CLD BF70x CDC Library Scope and INtended USE............ccoeriiiiiiiiiiine e 19
CLD CDC Uart Example V1.3 DESCIPLIONcvciviiieeiiiie ettt ste e e e ste e te e srestasaesrestaenresre s 19
CLD BF70X CDC LIBrary API ..ottt te et e e staanaesneesaensennes 20
(o8 o I o) 0D S ot [11 o T 1 SRS 20
(o8 o I o 0D ot [11 o 11Ul o SRS 33
cld_bf70x_cdc_lib_transmit_serial_datacccceriviiieriiiicie e 34
cld_bf70x_cdc_lib_send_network _CONNECLION SEALEcceviiiieiieiiiie e 35
cld_bf70x_cdc_lib_send_response_availablecooiiiiiiiiiieie e 36
cld_bf70x_cdc _lib_Send_Serial StAtEcccceieiiiiiiiicic et 37
cld_bf70x_cdc_lib_resume_paused_serial_data_transfer..........ccccovvviveiiiieniniie s 38
cld_bf70x_cdc_lib_resume_paused_control_transfer...........cccovieiiiiiic i 38
(o8 o I 1o TS o T o4 <o S 39
(o8 o I Lo TV o [Tod0]] T-T ot OSSPSR 39
(o8 o [0 T = SRS 40
(o8 o [0 g LT o= XY= o 0 ST 40
(o] o o0 <0 L PSS 41
Using the ADSP-BF707 EZ-BOAIccooiiiiiiiiiiciee e 43
(0013 1= o1 1 0] TP PO USRS PR PPN 43
Note about using UARTO and the FTDI USB to Serial CONVEIErc.cccovvveiiiiiieieceeie e 43
Adding the CLD BF70x CDC Library to an Existing CrossCore Embedded Studio Project................. 44

User FIrmMware COOE SNIPPETSoveieiiiitiriiite ittt ettt bbb 46

L0 U] Ko TR 46

U TT=T ol (o3 oSS 47

Disclaimer

This software is supplied "AS IS" without any warranties, express, implied or statutory, including but not
limited to the implied warranties of fitness for purpose, satisfactory quality and non-infringement. Closed
Loop Design LLC extends you a royalty-free right to reproduce and distribute executable files created
using this software for use on Analog Devices Blackfin family processors only. Nothing else gives you
the right to use this software.

Introduction

The Closed Loop Design (CLD) CDC library creates a simplified interface for developing a
Communication Device Class (CDC) Abstract Control Model (ACM) Serial Emulation device using the
Analog Devices ADSP-BF707 EZ-Board. The CLD BF70x CDC Library also includes support for a
serial console and timer functions which facilitates creating timed events quickly and easily. The library's
BF707 application interface is comprised of parameters used to customize the library's functionality as
well as callback functions used to notify the User application of events. These parameters and functions
are described in greater detail in the CLD BF70x CDC Library API section of this document.

USB Background

The following is a very basic overview of some of the USB concepts which are necessary to use the CLD
BF70x CDC Library. However, it is still recommended that developers have at least a basic
understanding of the USB 2.0 protocol as well as the CDC 1.2 Protocol. The following are some
resources to refer to when working with USB:

e The USB 2.0 Specification: http://www.usb.org/developers/docs/usb20_docs/

e The USB CDC Class specification v1.2:http://www.usb.org/developers/docs/devclass_docs/

e USB in a Nutshell: A free online wiki that explains USB concepts.
http://www.beyondlogic.org/usbnutshell/usb1.shtml

e "USB Complete" by Jan Axelson ISBN: 1931448086

USB is a polling based protocol where the Host initiates all transfers, so all USB terminology is from the
Host's perspective. For example a 'IN' transfer is when data is sent from a Device to the Host, and an
'‘OUT" transfer is when the Host sends data to a Device.

The USB 2.0 protocol defines a basic framework devices must implement in order to work correctly.
This framework is defined in the Chapter 9 of the USB 2.0 protocol, and is often referred to as the USB
'‘Chapter 9' functionality. Part of the Chapter 9 framework is standard USB requests used by a USB Host
to control the Device. Another part of the Chapter 9 framework is the USB Descriptors. These USB
Descriptors are used to notify the Host of the Device's capabilities when the Device is attached. The USB
Host uses the descriptors and the Chapter 9 standard requests to configure the Device. This process is
called the USB Enumeration. The CLD BF70x CDC Library includes support for the USB standard
requests and USB Enumeration using some of the parameters specified by the User application when
initializing the library. These parameters are discussed in the cld_bf70x_cdc_lib_init section of this
document. The CLD BF70x CDC Library facilitates USB enumeration and is Chapter 9 compliant
without User Application intervention as shown in the flow chart below. If you'd like additional
information on USB Chapter 9 functionality or USB Enumeration please refer to one of the USB
resources listed above.

http://www.usb.org/developers/docs/usb20_docs/
http://www.usb.org/developers/docs/devclass_docs/CDC1.2_WMC1.1_012011.zip
http://www.beyondlogic.org/usbnutshell/usb1.shtml

CLD BF70x CDC Library USB Enumeration Flow Chart

‘ USB Cable Connected or USB Bus Reset ‘

— ,

‘ Get Device Descriptor Request ‘

USB/External Event ‘

USB Host Event ‘

Set USB Address

Get Device Descriptor Request

Get Configuration Descriptor Request

USB Enumeration

Set Configuration
(CLD Bulk Library has 1 configuration)

Request String Descriptors

All USB data is transferred using Endpoints which act as a source or sink for data based on the endpoint's
direction (IN or OUT). The USB protocol defines four types of Endpoints, each of which has unique
characteristics that dictate how they are used. The four Endpoint types are: Control, Interrupt, Bulk and
Isochronous. Data transmitted over USB is broken up into blocks of data called packets. For each
endpoint type there are restrictions on the allowed max packet size. The allowed max packet sizes also
vary based on the USB connection speed. Please refer to the USB 2.0 protocol for more information
about the max packet size supported by the four endpoint types.

The CLD BF70x CDC Library uses Control, Interrupt and Bulk endpoints, so these endpoint types will be
discussed in more detail below.

A Control Endpoint is the only bi-directional endpoint type, and is typically used for command and status
transfers. A Control Endpoint transfer is made up of three stages (Setup Stage, Data Stage and Status
Stage). The Setup Stage sets the direction and size of the optional Data Stage. The Data Stage is where
any data is transferred between the Host and Device. The Status Stage gives the Device the opportunity to
report if an error was detected during the transfer. All USB Devices are required to include a default
Control Endpoint at endpoint number 0, referred to as Endpoint 0. Endpoint 0 is used to implement all
the USB Protocol defined Chapter 9 framework and USB Enumeration. In the CLD BF70x CDC Library
Endpoint 0 is used for USB Chapter 9 requests, as well as CDC requests. These CDC requests are
discussed in more detail in the CDC Abstract Control Model Background section of this document.

Interrupt Endpoints are used to transfer blocks of data where data integrity, and deterministic timing is
required. Deterministic timing is achieved by allowing the Device to specify a requested interval used by
the Host to initiate USB transfers, which gives the Device a guaranteed maximum time between
opportunities to transfer data. Interrupt Endpoints are particularly useful when the Device needs to report
to the Host when a change is detected without having to wait for the Host to ask for the information. An
example of how this is used with CDC is when a parity error is detect. When a CDC device detects a
parity error the device reports the error condition to the Host in a Serial State Notification using the CDC
Interrupt IN endpoint. This is more efficient then requiring the host to repeatedly send Control Endpoint
requests asking an error has occurred.

Bulk Endpoints are used to transfer large amounts of data where data integrity is critical, but does not
require deterministic timing. A characteristic of Bulk Endpoints is that they can fill USB bandwidth that
isn't used by the other endpoint types. This makes Bulk the lowest priority endpoint type, but it can also
be the fastest as long as the other endpoints don't saturate the USB Bus. An example of a devices that
uses Bulk endpoints is a Mass Storage Device (thumb drives). The CLD BF70x CDC Library includes a
Bulk IN and Bulk OUT endpoint, which are used to send and receive serial data with the USB Host,
respectively.

The flow charts below give an overview of how the CLD BF70x CDC Library and the User firmware
interact to process Bulk OUT and Bulk IN transfers. For the Interrupt IN endpoint the CLD BF70x CDC
Library uses individual functions to send CDC Notifications, which abstracts the User from the Interrupt
IN endpoint. Additionally, the User firmware code snippets included at the end of this document provide
a basic framework for implementing the CDC firmware using the CLD BF70x CDC Library.

CLD BF70x CDC Library Bulk OUT Flow Chart

USB Host Event

Bulk OUT packet

CLD BF70x CDC Library Bulk IN Flow Chart

Wait for the USB Host to issue a USB IN Token on the Bulk
IN endpoint

Bulk IN token

=

USB Host Event

CDC Abstract Control Model Background

The USB Communication Device Class (CDC) Abstract Control Model (ACM) protocol isa USB
Standard Class protocol released by the USB IF committee. The Communication Device Class was
created to provide a standardized way for USB communication devices to interface with a computer, and
covers a wide range of communication devices. The CLD BF70x CDC Library implements a Abstract
Control Model Serial Emulation device, so the scope of this document is limited to the CDC ACM Serial
Emulation functionality.

A CDC device is comprised of two USB interfaces. The first interface uses the Communication Device
Class and includes a single Interrupt IN endpoint used to send Notifications to the host. The second
interface uses the Data Interface Class and includes a Bulk IN and Bulk OUT endpoint, which are used to
transfer the serial emulation data with the USB Host.

CDC Notifications Interrupt IN Endpoint

The CDC protocol requires all devices to include a Interrupt IN endpoint which is used to send CDC
Notifications to the Host. For the CDC Abstract Control Model these Notifications include the Network
Connection, Response Available and Serial State Notifications. These Notifications are discussed below:

Network Connection Notification
The Network Connection Notification is used to report if the network is connected or disconnected to the
Host.

Response Available Notification

The Response Available Notification is used to notify the Host that a protocol specific response is
available, which is retrieved by the Host using the Get Encapsulated Response control endpoint request
described in the CDC Abstract Control Model Control Endpoint Requests section of this document.

Serial State Notification

The Serial State Notification is similar to the interrupt status register of a UART, and is used to report the
serial link status to the Host. The table below shows the data fields of the Serial State Notification. All of
the Serial State fields are active high, so a field is set to a '1' when it is active.

Field Description

bOverRun Received serial data was received while processing the previously received data.

bParity A parity error has occurred.

bFraming A framing error has occurred

bRingSignal | The current state of the ring signal detection

bBreak The current state of the break detection.

bTxCarrier State of the transmission carrier. This corresponds to the RS-232 DSR signal.
bRxCarrier State of the receive carrier detection. This signal corresponds to the RS-232 DCD signal.

Once the Serial State Notification has been sent the device will re-evaluate the above fields. For the
bTxCarrier and bRxCarrier the Serial State Notification is sent when these signals change. For the
remaining fields once the Serial State Notification has been sent their value is reset to zero, and will be
sent again when the field is settoa ‘1",

CDC Abstract Control Model Control Endpoint Requests

The CDC Abstract Control Model defines a couple Control Endpoint requests that a CDC peripheral is
required to support as well as some optional Control Endpoint requests. The Control Endpoint requests
used by the CLD BF70x CDC Library are explained in the following sections, and include flow charts
showing how the CLD BF70x CDC Library and the User firmware interact to the Control Endpoint
requests.

Additionally, the User firmware code snippets included at the end of this document provide a basic
framework for implementing the CDC control requests using the CLD BF70x CDC Library.

10

Send Encapsulated Command (required)

Send Encapsulated Command is a Control OUT request and is used by the Host to send protocol specific
data to the device.

CLD CDC Send Encapsulated Command Flow Chart

Send Encapsulated Data Setup Packet

USB Host Event

Send Encapsulated Command Data Stage

Send Encapsulated Command Status Stage

11

Get Encapsulated Command (required)
Get Encapsulated Command is a Control IN request used by the Host to request protocol specified data.

CLD BF70x CDC Library Get Encapsulated Command Flow Chart

Get Encapsulated Response Setup Packet

USB Host Event

Get Encapsulated Response Data Stage
|

Get Encapsulated Response Status Stage

Set Line Coding (optional)

The Set Line Coding Control OUT request is used by the Host configure the UART parameters of
emulated serial port. The Set Line Coding request includes the following line coding structure in the
Control OUT Data Phase.

typedef struct
{

unsigned long data terminal rate; /* CDC Data Terminal Rate 1in
bits per second. */
unsigned char num stop bits; /* CDC Number of stop bits

0 = 1 stop bit
1 = 1.5 stop bits
2 = 2 stop bits */

unsigned char parity; /* CDC Parity setting
0 = None
1 = odd
2 = Even
3 = Mark
4 = Space */
unsigned char num data bits; /* CDC number of data bits

(Only 5, 6, 7, 8 and 16
allowed) */
} CLD CDC Line Coding;

In response to a Set Line Coding command the CDC device should implement the requested
configuration, or stall the endpoint if the request is invalid.

13

CLD BF70x CDC Library Set Line Coding Flow Chart

Set Line Coding Setup Packet

USB Host Event

Set Line Coding Data Phase

Set Line Coding Status Stage

v

Get Line Coding (optional)

The Get Line Coding Control IN request is used by the Host request current UART parameters of

emulated serial port. The Get Line Coding request includes line coding structure described in the Set
Line Coding section in the Control IN Data Phase.

CLD BF70x CDC Library Get Line Coding Flow Chart

Get Line Coding Setup Packet

USB Host Event

Get Line Coding Data Stage

v

Get Line Coding Status Stage

15

Set Control Line State (optional)

The Set Control Line State Control OUT request is used by the Host to set the value of the emulated serial
port RS-232 RTS and DTR control signals. The Set Control Line State request includes the following
control signal structure in the Control OUT Data Phase.

typedef struct
{
union
{
struct
{
unsigned short dte present : 1; /* Indicates to DCE if DTE is
present or not.
This signal corresponds to
V.24 signal 108/2
and RS-232 signal DTR.
0 - Not Present
1 - Present */
unsigned short activate carrier : 1; /* Carrier control for half
duplex modems.
This signal corresponds to
V.24 signal 105 and RS-232
signal RTS.
0 - Deactivate carrier
1 - Activate carrier
The device ignores the
value of this bit when
operating in full duplex

mode. */
unsigned short reserved : 14;

} bits;
unsigned short state;
bous
} CLD_CDC Control Line State;

16

CLD BF70x CDC Library Set Control Line State Flow Chart

Set Control Line State Setup Packet

USB Host Event

Set Control Line State Status Stage

17

Send Break (optional)

The Send Break Control OUT request is used by the Host request the device to generate a RS-232 style

break for the specified duration (in milliseconds). If the duration is set to OXFFFF the device should

generate a break until a another Send Break command is received with a duration of 0.

CLD BF70x CDC Library Send Break Flow Chart

USB Host Event

Send Break Setup Packet

Send Break Status Stage

18

Dependencies
In order to function properly the CLD BF70x CDC Library requires the following Blackfin resources:

e One Blackfin General Purpose Timer.

o 24Mhz clock input connected to the Blackfin USBO_CLKIN pin.

e Optionally the CLD BF70x CDC Library can use one of the Blackfin UARTS to implement a
serial console interface.

e The User firmware is responsible for setting up the Blackfin clocks, as well as enabling the
Blackfin's System Event Controller (SEC) and configuring SEC Core Interface (SCI) interrupts to
be sent to the Blackfin core.

Memory Footprint
The CLD BF70x CDC Library approximate memory footprint is as follows:

Code memory: 29480 bytes

Data memory: 4884 bytes

Total: 34364 bytes or 33.56k

Heap memory: 1152 bytes (only malloc'ed if optional cld_console is enabled)

Note: The CLD BF70x CDC Library is currently optimized for speed (not space).

CLD BF70x CDC Library Scope and Intended Use

The CLD BF70x CDC Library implements a USB Communication Class Abstract Control Model Serial
Emulation device, as well as providing time measurements and optional bi-directional UART console
functionality. The CLD BF70x CDC Library is designed to be added to an existing User project, and as
such only includes the functionality needed to implement the above mentioned USB, timer and UART
console features. All other aspects of Blackfin processor configuration must be implemented by the User
code.

CLD CDC Uart Example v1.3 Description

The CLD_CDC_Uart_example_v1_3 project provided with the CLD BF70x CDC Library implements a
basic USB to Serial device using the ADSP-BF707 EZ-Board and one of the BF707's UARTS. The
firmware included in this example to interface with the BF707 UART uses the Analog Devices System
Services driver. This was done to show how the CLD BF70x CDC Library co-exists with the ADI
System Services. This example is not indented to be a used as a complete stand alone project. Instead,
this project only includes the User functionality required to create a basic USB to Serial device, and it is
up to the User to include their own custom system initialization and any extra required functionality.

19

CLD BF70x CDC Library API

The following CLD library API descriptions include callback functions that are called by the library
based on USB events. The following color code is used to identify if the callback function is called from
the USB interrupt service routine, or from mainline. The callback functions called from the USB
interrupt service routine are also italicized so they can be identified when printed in black and white.

Callback called from the mainline context

Callback called from the USB interrupt service routine

cld_bf70x_cdc_lib_init

CLD RV cld bf70x_cdc_lib init (CLD BF70x CDC Lib Init Params *
cld bf70x _cdc lib params)

Initialize the CLD BF70x CDC Library.

Arguments

cld_bf70x_cdc_lib_params Pointer to a CLD_BF70x_CDC_Lib_Init_Params
structure that has been initialized with the User
Application specific data.

Return Value
This function returns the CLD_RV type which represents the status of the CLD CDC initialization
process. The CLD_RV type has the following values:

CLD_SUCCESS The library was initialized successfully
CLD FAIL There was a problem initializing the library
CLD ONGOING The library initialization is being processed
Details

The cld_bf70x_cdc_lib_init function is called as part of the device initialization and must be repeatedly
called until the function returns CLD_SUCCESS or CLD_FAIL. If CLD_FAIL is returned the library
will output an error message identifying the cause of the failure using the cld_console UART if enabled
by the User application. Once the library has been initialized successfully the main program loop can
start.

The CLD_BF70x_CDC_Lib_Init_Params structure is described below:

typedef struct

{
CLD Timer Num timer num;
CLD Uart Num uart num;
unsigned long uart baud;
unsigned long sclkO;

void (*fp console rx byte) (unsigned char byte);

unsigned short vendor id;
unsigned short product id;

CLD Serial Data Bulk Endpoint Params * p serial data rx endpoint params;

20

CLD Serial Data Bulk Endpoint Params * p serial data tx endpoint params;
CLD CDC Notification Endpoint Params * p notification endpoint params;

CLD USB Transfer Request Return Type (*fp serial data received)

(CLD_USB Transfer Params * p transfer data);

CLD USB Transfer Request Return Type (*fp cdc cmd send encapsulated cmd)

(CLD USB Transfer Params * p transfer data);

CLD USB Transfer Request Return Type (*fp cdc cmd get encapsulated resp)

(CLD_USB Transfer Params * p transfer data);

CLD USB Data Received Return Type (*fp cdc cmd set line coding)

(CLD_CDC Line Coding * p line coding);

CLD RV (*fp cdc cmd get line coding) (CLD CDC Line Coding * p line coding);

CLD USB Data Received Return Type (*fp cdc cmd set control line state)

(CLD CDC Control Line State * p control line state);

CLD USB Data Received Return Type (*fp cdc cmd send break)

(unsianed short duration);

unsigned char usb bus max power;
unsigned char support cdc network notification;
unsigned short cdc class bcd version;

unsigned char

cdc class control protocol code;

unsigned short device descriptor bcdDevice;

const char
const char
const char
const char
const char
const char

*
*
*
*
*
*

p_usb string manufacturer;

p_usb string product;

p_usb string serial number;

p_usb string configuration;

p_usb string communication class interface;
p_usb string data class interface;

unsigned short usb string language id;
void (*fp cld usb event callback) (CLD USB Event event);
} CLD BF70x CDC Lib Init Params;

A description of the CLD BF70x_CDC_Lib_Init_Params structure elements is included below:

Structure Element

Description

timer_num

Identifies which of the ADSP-BF707 timers should be used by
the CLD BF70x CDC Library. The valid timer_num values are
listed below:

CLD TIMER 0
CLD TIMER 1
CLD TIMER 2
CLD TIMER 3
CLD TIMER 4
CLD TIMER 5
CLD TIMER 6
CLD TIMER 7

Any other timer_num values will result in the
cld_bf70x_cdc_lib_init function returning CLD_FAIL.

uart_num

Identifies which of the ADSP-BF707 UARTS should be used by
the CLD BF70x CDC Library to implement the cld_console

21

(refer to the cld_console API description for additional
information). The valid uart_num values are listed below:

CLD_UART 0
CLD UART 1
CLD UART DISABLE

If uart_num is setto CLD_UART_DISABLE the CLD BF70x
CDC Library will not use a UART, and the cld_console
functionality is disabled.

uart_baud

Sets the desired UART baud rate used for the cld_console.
The remaining cld_console UART parameters are as follows:

Number of data bits: 8
Number of stop bits: 1

No Parity

No Hardware Flow Control

sclk0

Used to tell the CLD BF70x CDC Library the frequency of the
ADSP_BF707 SCLKO clock.

fp_console_rx_byte

Pointer to the function that is called when a byte is received by
the cld_console UART. This function has a single parameter
(‘byte") which is the value received by the UART.

Note: Set to CLD_NULL if not required by application

vendor _id The 16-bit USB vendor ID returned to the USB Host in the USB
Device Descriptor.
USB Vendor ID's are assigned by the USB-IF and can be
purchased through their website (www.usb.org).

product_id The 16-bit product ID returned to the USB Host in the USB

Device Descriptor.

p_serial_data_rx_endpoint_params

Pointer to a CLD_Serial_Data_Bulk_Endpoint_Params
structure that describes how the Bulk OUT endpoint should be
configured. The CLD_Serial_Data_Bulk_Endpoint_Params
structure contains the following elements:

Structure Element Description
endpoint_num Sets the USB endpoint number
of the Bulk endpoint. The
endpoint number must be
within the following range:

1 < endpoint num < 12. Any
other endpoint number will
result in the
cld_bf70x_cdc_lib_init
function returning CLD_FAIL
max_packet_size_full_speed Sets the Bulk endpoint's max
packet size when operating at
Full Speed. The valid Bulk
endpoint max packet sizes are
as follows:

8, 16, 32, and 64 bytes.
max_packet size high speed | Sets the Bulk endpoint's max

packet size when operating at
High Speed. The valid Bulk
endpoint max packet sizes are
as follows:

8, 16, 32, 64 and 512 bytes.

p_serial_data_tx_endpoint_params

Pointer to a CLD_Serial_Data_Bulk_Endpoint_Params
structure that describes how the Bulk IN endpoint should be
configured. The CLD_Serial_Data_Bulk_Endpoint_Params
structure contains the following elements:

Structure Element

Description

endpoint_num

Sets the USB endpoint number
of the Bulk endpoint. The
endpoint number must be
within the following range:

1 <endpoint_ num < 12. Any
other endpoint number will
result in the
cld_bf70x_cdc_lib_init
function returning CLD_FAIL

max_packet_size_full_speed

Sets the Bulk endpoint's max
packet size when operating at
Full Speed. The valid Bulk
endpoint max packet sizes are
as follows:

8, 16, 32, and 64 bytes.

max_packet_size high_speed

Sets the Bulk endpoint's max
packet size when operating at
High Speed. The valid Bulk
endpoint max packet sizes are
as follows:

8, 16, 32, 64 and 512 bytes.

p_notification_endpoint_params

Pointer to a CLD_CDC_Notification_Endpoint_Params
structure that describes how the Interrupt IN endpoint should be
configured. The CLD_CDC_Notification_Endpoint_Params
structure contains the following elements:

Structure Element

Description

endpoint_num

Sets the USB endpoint
number of the Interrupt
endpoint. The endpoint
number must be within the
following range:

1 <endpoint num < 12. Any
other endpoint number will
result in the
cld_bf70x_cdc_lib_init
function returning

CLD FAIL

max_packet size full speed

Sets the Interrupt endpoint's

max packet size when
operating at Full Speed. The
maximum max packet size is
64 bytes.

polling_interval_full_speed Full-Speed polling interval in
the USB Endpoint
Descriptor. (See USB 2.0
section 9.6.6)

max_packet_size_high_speed | Sets the Interrupt endpoint's
max packet size when
operating at High Speed.
The maximum max packet
size

1024 bytes.

polling_interval_high_speed High-Speed polling interval
in the USB Endpoint
Descriptor. (See USB 2.0
section 9.6.6)

fp_serial_data_received

Pointer to the function that is called when the Bulk OUT
endpoint receives data. This function takes a pointer to the
CLD_USB_Transfer_Params structure ('p_transfer_data’)as a
parameter.

The following CLD_USB_Transfer_Params structure elements
are used to processed a Bulk OUT transfer:

Structure Element Description

num_bytes The number of bytes to
transfer to the p_data_buffer
before calling the
fp_usb_out_transfer
complete callback function.

When the
fp_serial_data_received
function is called num_bytes
is set the number of bytes in
the current Bulk OUT
packet. If the Bulk OUT
total transfer size is known
num_bytes can be set to the
transfer size, and the CLD
BF70x CDC Library will
complete the entire bulk
transfer without calling
fp_serial_data_received
again. If num_bytes isn't
modified the
fp_serial_data_received

function will be called for

each Bulk OUT packet.

p_data_buffer

Pointer to the data buffer to
store the received Bulk OUT
data. The size of the buffer
should be greater than or
equal to the value in
num_bytes.

fp_usb_out_transfer_complete

Function called when
num_bytes of data has been
transferred to the
p_data_buffer memory.

fp_transfer_aborted callback

Function called if there is a
problem transferring the
requested Bulk OUT data.

transfer_timeout_ms

Bulk OUT transfer timeout
in milliseconds. If the Bulk
OUT transfer takes longer
then this timeout the transfer
is aborted and the
fp_transfer_aborted
callback is called.

Setting the timeout to 0
disables the timeout

The fp_serial_data_received function returns the
CLD_USB_Transfer_Request_Return_Type, which has the

following values:

Return Value

Description

CLD_USB_TRANSFER_ACCEPT

Notifies the CLD BF70x CDC
Library that the Bulk OUT
data should be accepted using
the p_transfer_data values.

CLD_USB_TRANSFER_PAUSE

Requests that the CLD BF70x
CDC Library pause the curren
transfer. This causes the Bulk
OUT endpoint to be nak'ed

until the transfer is resumed by
calling
cld_bf70x_cdc_lib_resume_pg
used_serial data_transfer.

CLD_USB_TRANSFER_DISCARD

Requests that the CLD BF70x
CDC Library discard the
number f bytes specified in
p_transfer_params->
num_bytes. In this case the
library accepts the Bulk OUT
data from the USB Host but
discards the data. This is
similar to the concepts of
frame dropping in audio/video

applications.

CLD_USB_TRANSFER_STALL

This notifies the CLD BF70x
CDC Library that there is an
error and the Bulk OUT
endpoint should be stalled.

fp_cdc_cmd_send_encapsulated_cmd

Pointer to the function that is called when a CDC Send
Encapsulated Command request is received. This function a
pointer to the CLD_USB_Transfer_Params structure
(‘p_transfer_data’) as its parameters.

The following CLD_USB_Transfer_Params structure elements
are used to processed a Send Encapsulated Command transfer:

Structure Element

Description

num_bytes

The number of bytes from
the Setup Packet wLength
field, which is the number
of bytes that will be
transferred to p_data_buffer
before calling the
fp_usb_out_transfer_
complete callback function.

p_data_buffer

Pointer to the data buffer to
store the Send Encapsulated
Command data. The size of
the buffer should be greater
than or equal to the value in
num_bytes.

fp_usb_out_transfer_complete

Function called when
num_bytes of data has been
written to the p_data_buffer
memory.

fp_transfer_aborted_callback

Function called if there is a
problem receiving the data,
or if the transfer is
interrupted.

transfer_timeout_ms

Not used for Control
Requests since the Host has
the ability to interrupt any
Control transfer.

The fp_cdc_cmd_send_encapsulated_cmd function returns the
CLD_USB_Transfer_Request_Return_Type, which has the
following values:

Return Value

Description

CLD_USB_TRANSFER_ACCEPT

Notifies the CLD BF70x
CDC Library that the Send
Encapsulated Command data
should be accepted using the
p_transfer_data values.

CLD_USB_TRANSFER_PAUSE Requests that the CLD
BF70x CDC Library pause
the Set Report transfer. This
causes the Control Endpoint
to be nak'ed until the transfer
is resumed by calling
cld_bf70x_cdc_lib_resume_
paused_control_transfer.

CLD_USB_TRANSFER_DISCARD | Requests that the CLD
BF70x CDC Library discard
the number of bytes
specified in
p_transfer_params->
num_bytes. In this case the
library accepts the Send
Encapsulated Command
from the USB Host but
discards the data. This is
similar to the concepts of
frame dropping in
audio/video applications.

CLD_USB_TRANSFER_STALL This notifies the CLD BF70x
CDC Library that there is an
error and the request should
be stalled.

fp_cdc_cmd_get encapsulated_resp

Pointer to the function that is called when a CDC Get
Encapsulated Response request is received. This function takes
a pointer to the CLD_USB_Transfer_Params structure
(‘p_transfer_data’) as its parameters.

The following CLD_USB_Transfer_Params structure elements
are used to processed a Get Encapsulated Response request:

Structure Element Description

num_bytes The number of bytes from
the Setup Packet wLength
field.

p_data_buffer Pointer to the data buffer to

source the Get Encapsulated
Response data. The size of

the buffer should be greater

than or equal to the value in
num_bytes.

fp_usb_in_transfer_complete Function called when Get
Encapsulated Response data
has been transferred to the
Host.

fp_transfer_aborted_callback | Function called if there is a
problem transferring the data,
or if the transfer is

interrupted

transfer_timeout_ms

Not used for Control
Requests since the Host has
the ability to interrupt any
Control transfer.

The fp_cdc_cmd_get_encapsulated_resp function returns the
CLD_USB_Transfer_Request_Return_Type, which has the

following values:

Return Value

Description

CLD_USB_TRANSFER_ACCEPT

Notifies the CLD BF70x
CDC Library that the Get
Encapsulated Response data
should be transferred using
the p_transfer_data values.

CLD_USB_TRANSFER_PAUSE

Requests that the CLD
BF70x CDC Library pause
the Get Encapsulated
Response transfer. This
causes the Control Endpoint
to be nak'ed until the transfer
is resumed by calling
cld_bf70x_cdc_lib_resume_
paused_control_transfer.

CLD_USB_TRANSFER_DISCARD

Requests that the CLD
BF70x CDC Library to
return a zero length packet in
response to the Get
Encapsulated Response
request.

CLD_USB_TRANSFER_STALL

This notifies the CLD BF70x
CDC Library that there is an
error and the request should
be stalled.

fp_cdc_cmd_set_line_coding

Pointer to the function that is called when a CDC Set Line
Coding request is received. This function takes a pointer to the
Host specified CLD_CDC_Line_Coding structure

(‘p_line_coding') as its parameters.

The following CLD_CDC_Line_Coding structure elements are
used to processed a Set Line Coding request:

Structure Element

Description

data_terminal_rate

Serial baud rate in bits per
second.

num_stop_bits

CDC Number of stop bits.

0 =1 stop bit
1 = 1.5 stop bits
2 = 2 stop bits.

parity

CDC parity setting
0 = None

1=0dd

2 = Even
3 = Mark
4 = Space

num_data_bits

CDC Number of data bits
(only 5, 6, 7, 8 and 16 are
valid).

The fp_cdc_cmd_set_line_coding function returns the
CLD_USB_Data_Received_Return_Type, which has the

following values:

Return Value

Description

CLD_USB_DATA_GOOD

Notifies the CLD BF70x
CDC Library that the request
is valid.

CLD_USB_DATA BAD_STALL

Notifies the CLD BF70x
CDC Library that the request
is invalid, and should be
stalled.

fp_cdc_cmd_get _line_coding

Pointer to the function that is called when a CDC Get Line
Coding request is received. This function takes a pointer to
CLD_CDC_Line_Coding structure ('p_line_coding') as its
parameters. The User firmware should set the p_line_coding
structure values based on its active settings.

The following CLD_CDC_Line_Coding structure elements are
used to processed a Get Line Coding request:

Structure Element

Description

data_terminal_rate

Serial baud rate in bits per
second.

num_stop_bits

CDC Number of stop bits.

0 =1 stop bit

1 = 1.5 stop bits

2 = 2 stop bits.
parity CDC parity setting

0 = None

1=0dd

2 =Even

3 = Mark

4 = Space

num_data_bits

CDC Number of data bits
(only 5, 6, 7,8 and 16 are
valid).

The fp_cdc_cmd_get_line_coding function returns CLD_RV,

which has the following values:

Return Value

Description

CLD_SUCCESS

Notifies the CLD BF70x
CDC Library that the request
is valid and the

p_line_coding value should
be returned to the Host.

CLD_FAIL Notifies the CLD BF70x
CDC Library that the request
is invalid, and should be
stalled.

fp_cdc_cmd_set_control_line_state

Pointer to the function that is called when a CDC Set Control
Line State request is received. This function takes a pointer to
the Host specified CLD_CDC_Control_Line_State structure
(‘p_control_line_state") as its parameters.

The following CLD_CDC_Control_Line_State structure
elements are used to processed a Set Control Line State request:

Structure Element Description

dte_present Controls if the DTE is
present or not. This
corresponds to the RS-232
DTR signal.

0 = Not Present

1 = Present

activate_carrier Carrier control used in half
duplex serial links. This
signal corresponds to the RS-
232 RTS signal.

0 = Disabled

1 = Active

The fp_cdc_cmd_set_control_line_state function returns the
CLD_USB_Data_Received_Return_Type, which has the
following values:

Return Value Description

CLD_USB_DATA_GOOD Notifies the CLD BF70x
CDC Library that the request
is valid.

CLD_USB_DATA_BAD_STALL Notifies the CLD BF70x

CDC Library that the request
is invalid, and should be
stalled.

fp_cdc_cmd_send_break

Pointer to the function that is called when a CDC Send Break
request is received. This function takes the host specified
duration in milliseconds (‘duration’) as its parameters.

The fp_cdc_cmd_send_break function returns the
CLD_USB_Data_Received_Return_Type, which has the
following values:

Return Value Description

CLD_USB_DATA_GOOD Notifies the CLD BF70x
CDC Library that the request
is valid.

CLD_USB_DATA_BAD_STALL Notifies the CLD BF70x

CDC Library that the request
is invalid, and should be
stalled.

usb_bus_max_power

USB Configuration Descriptor bMaxPower value (0 = self
powered). Refer to the USB 2.0 protocol section 9.6.3.

support_cdc_network_connection

Tells the CLD BF70x CDC Library if the User firmware
supports the CDC Network Connection Notification.

0 = Not supported

1 = Supported

cdc_class_bcd version

CDC Class Version in BCD. Returned in the CDC Header
Functional Descriptor's bcdCDC field. (refer to the CDC
specification v1.2 section 5.3.2.1).

cdc_class_control_protocol_code

Value used in the CDC interface descriptor's binterfaceProtocol
field. The valid CDC Protocol codes are defined in the CDC
v.1.2 specification in Table 5 on page 13.

device_descriptor_bcd_device

USB Device Descriptor bcdDevice value.
Refer to the USB 2.0 protocol section 9.6.1.

p_usb_string_manufacturer

Pointer to the null-terminated string. This string is used by the
CLD BF70x CDC Library to generate the Manufacturer USB
String Descriptor. If the Manufacturer String Descriptor is not
used set p_usb_string_manufacturer to CLD NULL.

p_usb_string_product

Pointer to the null-terminated string. This string is used by the
CLD BF70x CDC Library to generate the Product USB String
Descriptor. If the Product String Descriptor is not used set
p_usb_string_product to CLD_NULL.

p_usb_string_serial_number

Pointer to the null-terminated string. This string is used by the

CLD BF70x CDC Library to generate the Serial Number USB

String Descriptor. If the Serial Number String Descriptor is not
used set p_usb_string_serial_number to CLD_NULL.

p_usb_string_configuration

Pointer to the null-terminated string. This string is used by the
CLD BF70x CDC Library to generate the Configuration USB
String Descriptor. If the Configuration String Descriptor is not
used set p_usb_string_configuration to CLD _NULL.

p_usb_string_communication_class_i
nterface

Pointer to the null-terminated string. This string is used by the
CLD BF70x CDC Library to generate the CDC Interface USB
String Descriptor. If the CDC Interface String Descriptor is not
used set p_usb_string_communication_class_interface to
CLD_NULL.

p_usb_string_data_class_interface

Pointer to the null-terminated string. This string is used by the
CLD BF70x CDC Library to generate the Data Class Interface
USB String Descriptor. If the Data Interface String Descriptor is
not used set p_ush_string_data_class_interface to CLD_NULL.

usb_string_language_id

16-bit USB String Descriptor Language ID Code as defined in
the USB Language Identifiers (LANGIDs) document
(www.usb.org/developers/docs/USB_L ANGIDs.pdf).

0x0409 = English (United States)

fp_cld_usb_event_callback

Function that is called when one of the following USB events
occurs. This function has a single CLD_USB_Event parameter.

Note: This callback can be called from the USB interrupt or

mainline context depending on which USB event was detected.
The CLD_USB_Event values in the table below are highlighted
to show the context the callback is called for each event.

The CLD_USB_Event has the following values:

Return Value

Description

CLD_USB_CABLE_CONNECTED

USB Cable Connected.

CLD_USB_CABLE_DISCONNECT
ED

USB Cable Disconnected

CLD_USB_ENUMERATED_CONFIG
URED

USB device enumerated (USB
Configuration set to a hon-zer
value)

CLD_USB_UN_CONFIGURED

USB Configuration set to 0

CLD_USB_BUS_RESET

USB Bus reset received

Note: Set to CLD_NULL if not required by application

cld_bf70x_cdc_lib_main
void cld bf70x_cdc_lib main (void)
CLD BF70x CDC Library mainline function

Arguments
None

Return Value
None.

Details
The cld_bf70x_cdc_lib_main function is the CLD BF70x CDC Library mainline function which must be
called in every iteration of the main program loop in order for the library to function properly.

33

cld_bf70x_cdc_lib_transmit_serial_data

CLD USB Data Transmit Return Type cld bf70x cdc_ lib transmit serial data
(CLD_USB Transfer Params * p transfer data)

CLD BF70x CDC Library function used to send serial over the Bulk IN endpoint.

Arguments

p_transfer data Pointer to a CLD_USB_Transfer_Params structure
used to describe the data being transmitted.

Return Value

This function returns the CLD_USB_Data_Transmit_Return_Type type which reports if the Bulk IN
transmission request was started. The CLD_USB_Data_Transmit_Return_Type type has the following
values:

CLD_USB_TRANSMIT_SUCCESSFUL The library has started the requested Bulk IN
transfer.
CLD_USB_TRANSMIT_FAILED The library failed to start the requested Bulk IN

transfer. This will happen if the Bulk IN endpoint is
busy, or if the p_transfer_data-> data_buffer is set
to NULL

Details
The cld_bf70x_cdc_lib_transmit_serial_data function transmits the data specified by the p_transfer_data
parameter to the USB Host using the Device's Bulk IN endpoint.

The CLD_USB_Transfer_Params structure is described below.

typedef struct
{
unsigned long num bytes;
unsigned char * p data buffer;
union
{
CLD USB Data Received Return Type (*fp usb out transfer complete) (void);
void (*fp usb in transfer complete) (void);
}callback;
void (*fp transfer aborted callback) (wvoid);
void transfer timeout ms;
} CLD USB Transfer Params;

A description of the CLD_USB_Transfer_Params structure elements is included below:

Structure Element Description

num_bytes The number of bytes to transfer to the USB Host. Once the
specified number of bytes have been transmitted the
usb_in_transfer_complete callback function will be called.

p_data_buffer Pointer to the data to be sent to the USB Host. This buffer must
include the number of bytes specified by num_bytes.
fp_usb_out_transfer_complete Not Used for Bulk IN transfers

34

fp_usb_in_transfer_complete Function called when the specified data has been transmitted to the
USB host. This function pointer can be set to CLD_NULL if the
User application doesn't want to be notified when the data has been
transferred.

fp_transfer_aborted_callback Function called if there is a problem transmitting the data to the
USB Host. This function can be setto CLD_NULL if the User
application doesn't want to be notified if a problem occurs.

transfer_timeout_ms USB transfer timeout in milliseconds. If the Bulk IN transfer takes
longer then this timeout the transfer is aborted and the
fp_transfer_aborted_callback is called.

Setting the timeout to 0 disables the timeout

cld_bf70x_cdc_lib_send_network_connection_state

CLD USB Data Transmit Return Type cld bf70x_cdc_lib_send network_connection_state
(CLD_BF70x_CDC_Lib Network Connection State state)

CLD BF70x CDC Library function used to send the CDC Network Connection Notification using the
Interrupt IN endpoint.

Arguments

state | The Network Connection state to send to the Host. |

Return Value

This function returns the CLD_USB_Data_Transmit_Return_Type type which reports if the Interrupt IN
transmission request was started. The CLD_USB_Data_Transmit_Return_Type type has the following
values:

CLD_USB_TRANSMIT_SUCCESSFUL The library has started the requested Interrupt IN
transfer.
CLD_USB_TRANSMIT FAILED The library failed to start the requested Interrupt IN

transfer. This will happen if the Interrupt IN
endpoint is busy, or if the p_transfer_data->
data_buffer is set to NULL

Details
The cld_bf70x_cdc_lib_send_network_connection_state function transmits the network connection state
specified by the state parameter to the USB Host using the Device's Interrupt IN endpoint.

The CLD_BF70x_CDC_Lib_Network_ Connection_State enum values are listed below.

Enum Element Description

CLD_CDC_NETWORK DISCONNECTED | The CDC Network is disconnected.

CLD_CDC_NETWORK_CONNECTED The CDC Network is connected.

cld_bf70x_cdc_lib_send_response_available

CLD USB Data Transmit Return Type cld bf70x cdc_lib send response_available
(CLD_BF70x_CDC Lib Network Connection State state)

CLD BF70x CDC Library function used to send the CDC Response Available Notification using the
Interrupt IN endpoint.

Arguments
None.

Return Value

This function returns the CLD_USB_Data_Transmit_Return_Type type which reports if the Interrupt IN
transmission request was started. The CLD_USB_Data_Transmit_Return_Type type has the following
values:

CLD_USB_TRANSMIT_ SUCCESSFUL The library has started the requested Interrupt IN
transfer.
CLD_USB_TRANSMIT FAILED The library failed to start the requested Interrupt IN

transfer. This will happen if the Interrupt IN
endpoint is busy, or if the p_transfer_data->
data_buffer is set to NULL

Details

The cld_bf70x_cdc_lib_send_response_available function transmits the CDC Response Available
Notification to the USB Host using the Device's Interrupt IN endpoint. The Host can then request the
response data using a Send Encapsulated Response Control endpoint request.

36

cld_bf70x_cdc_lib_send_serial_state

CLD USB Data Transmit Return Type cld bf70x cdc_lib send serial state
(CLD_CDC_Serial State * p serial state)

CLD BF70x CDC Library function used to send the CDC Serial State Notification using the Interrupt IN
endpoint.

Arguments

p_serial_state Pointer to a CLD_CDC_Serial_State structure used
to report the current state of the emulated serial
port to the USB Host.

Return Value

This function returns the CLD_USB_Data_Transmit_Return_Type type which reports if the Interrupt IN
transmission request was started. The CLD_USB_Data_Transmit_Return_Type type has the following
values:

CLD_USB_TRANSMIT_SUCCESSFUL The library has started the requested Interrupt IN
transfer.
CLD_USB_TRANSMIT_FAILED The library failed to start the requested Interrupt IN

transfer. This will happen if the Interrupt IN
endpoint is busy, or if the p_transfer_data->
data_buffer is set to NULL

Details
The cld_bf70x_cdc_lib_send_serial_data function transmits the current CDC Serial State specified by the
p_serial_state parameter to the USB Host using the Device's Interrupt IN endpoint.

The CLD CLD_CDC_Serial_State structure is described below.

typedef struct
{
union
{
struct
{
unsigned short rx carrier
unsigned short tx carrier
unsigned short break detect
unsigned short ring signal
unsigned short framing error
unsigned short parity error
unsigned short rx data overrun
unsigned short reserved
} bits;
unsigned short state;
bous
} CLD CDC_Serial State;

S i i

Ne Ne Ne Ne Ne Ne Ne o~

A description of the CLD_CDC_Serial_State structure elements is included below:

37

Structure Element Description

rx_carrier State of receiver carrier detection mechanism of device. This signal
corresponds to V.24 signal 109 and RS-232 signal DCD.

tx_carrier State of transmission carrier. This signal corresponds to V.24 signal
106 and RS-232 signal DSR.

break detect State of break detection mechanism of the device.

ring_signal State of ring signal detection of the device.

framing_error A framing error has occurred.

parity_error A parity error has occurred.

rx_data_overrun Received data has been discarded due to overrun in the device.

Once the Serial State Notification has been sent the device re-evaluates the above fields. For the
tx_carrier and rx_carrier the Serial State Notification is sent when these signals change. For the
remaining fields once the Serial State Notification has been sent their value is reset to zero, and will be
sent to the Host again when the field issettoa'l".

cld_bf70x_cdc_lib_resume_paused_serial_data_transfer

void cld bf70x_cdc_lib paused resume serial data_ transfer (void)

CLD BF70x CDC Library function used to resume a paused Serial Data Bulk OUT transfer.

Arguments
None

Return Value
None.

Details

The cld_bf70x_cdc_lib_resume_paused_serial_data_transfer function is used to resume a Bulk OUT
transfer that was paused by the fp serial data received function returning
CLD_USB_TRANSFER_PAUSE. When called the
cld_bf70x_cdc_lib_resume_paused_serial_data_transfer function will call the User application’s

fp _serial data received function passing the CLD_USB_Transfer_Params of the original paused
transfer. The fp serial data received function can then chose to accept, discard, or stall the Bulk
OUT request.

cld_bf70x_cdc_lib_resume_paused_control_transfer

void cld bf70x_cdc_lib resume_paused control_ transfer (void)

CLD BF70x CDC Library function used to resume a paused Control endpoint transfer.

Arguments
None

Return Value
None.

Details

The cld_bf70x_cdc_lib_resume_paused_control_transfer function is used to resume a Control transfer
that was paused by the fp cdc_cmd send encapsulated cmd Of
fp_cdc_cmd get encapsulated resp function returning CLD_USB_TRANSFER_PAUSE. When
called the cld_bf70x_cdc_lib_resume_paused_control_transfer function will call the User application’s
fp _cdc _cmd send encapsulated cmd OF fp cdc cmd get encapsulated resp function
passing the CLD_USB_Transfer_Params of the original paused transfer. The User function can then
chose to accept, discard, or stall the Control endpoint request.

cld_lib_usb_connect

void cld_1lib usb_connect (void)

CLD BF70x CDC Library function used to connect to the USB Host.

Arguments
None

Return Value
None.

Details
The cld_ lib_usb_connect function is called after the CLD BF70x CDC Library has been initialized to
connect the USB device to the Host.

cld_lib_usb_disconnect

void cld_lib usb_disconnect (void)

CLD BF70x CDC Library function used to disconnect from the USB Host.

Arguments
None

Return Value
None.

Details
The cld_lib_usb_disconnect function is called after the CLD BF70x CDC Library has been initialized to
disconnect the USB device to the Host.

39

cld_time_get
CLD Time cld time get (void)
CLD BF70x CDC Library function used to get the current CLD time.

Arguments
None

Return Value
The current CLD library time.

Details
The cld_time_get function is used in conjunction with the cld_time_passed_ms function to measure how
much time has passed between the cld_time_get and the cld_time_passed_ms function calls.

cld_time_passed_ms

CLD Time cld_time passed ms(CLD Time time)

CLD BF70x CDC Library function used to measure the amount of time that has passed.

Arguments

time A CLD_Time value returned by a cld_time_get
function call.

Return Value
The number of milliseconds that have passed since the cld_time_get function call that returned the
CLD_Time value passed to the cld_time_passed_ms function.

Details
The cld_time_passed_ms function is used in conjunction with the cld_time_get function to measure how
much time has passed between the cld_time_get and the cld_time_passed_ms function calls.

If a one millisecond resolution is granular enough for your needs, you can have a virtually unlimited
number of timed events when using cld_time_get and cld_time_passed_ms.

40

cld_console

CLD RV cld_console (CLD CONSOLE COLOR foreground color, CLD CONSOLE COLOR
background color, const char *fmt, ...)

CLD Library function that outputs a User defined message using the UART specified in the
CLD _BF70x_CDC_Lib_Init_Params structure.

Arguments

foreground color The CLD_CONSOLE_COLOR used for the
console text.

CLD CONSOLE_BLACK
CLD CONSOLE_RED
CLD_CONSOLE_GREEN
CLD_CONSOLE_YELLOW
CLD_CONSOLE_BLUE
CLD CONSOLE_PURPLE
CLD_CONSOLE_CYAN
CLD CONSOLE WHITE

background color The CLD_CONSOLE_COLOR used for the
console background.

CLD CONSOLE_BLACK
CLD_CONSOLE_RED
CLD_CONSOLE_GREEN
CLD_CONSOLE_YELLOW
CLD_CONSOLE_BLUE
CLD CONSOLE_PURPLE
CLD_CONSOLE_CYAN
CLD CONSOLE WHITE

The foreground and background colors allow the

User to generate various color combinations like
the ones shown below:

Green texXt wWith a Wnite background

white text with a Green background

fmt The User defined ASCII message that uses the

same format specifies as the printf function.

Optional list of additional arguments

41

Return Value
This function returns whether or not the specified message has been added to the cld_console transmit
buffer.

CLD_SUCCESS The message was added successfully.

CLD_FAIL The message was not added, so the message will
not be transmitted. This will occur if the CLD
Console is disabled, or if the message will not fit
into the transmit buffer.

Details

cld_console is similar in format to printf, and also natively supports setting a foreground and background
color. A feature of cld_console is that it is non-blocking, i.e. long messages can be queued and the
function call returns prior to the message draining from the buffer. Overly long messages are truncated to
128 bytes, and up to 1024 characters can be in escrow to be transmitted. Received characters can be
processed by supplying a console_rx_byte function in the library init structure.

The following will output The quick brown fox' on a black background with green text:

cld console(CLD CONSOLE GREEN, CLD CONSOLE BLACK, "The quick brown $%$s\n\r", "fox");

Using the ADSP-BF707 Ez-Board

Connections:

5V Power
Connector

USB-to-Serial port connected
to Blackfin UART O

UART 0 can be used for the
CLD Console port

Blackfin USE 0 used
by the CLD Library

Note about using UARTO and the FTDI USB to Serial Converter

On the ADSP-BF707 Ez-Board the Blackfin's UARTO serial port is connected to a FTDI FT232RQ USB-
to-Serial converter. By default the UART 0 signals are connected to the FTDI chip. However, the demo
program shipped on the Ez-Board disables the UARTO to FTDI connection. If the FTDI converter is used
for the CLD BF70x CDC Library console change the boot selection switch (located next to the power
connector) so the demo program doesn't boot. Once this is done the FTDI USB-to-Serial converter can be
used with the CLD BF70x CDC Library console connected to UARTO.

43

Adding the CLD BF70x CDC Library to an Existing CrossCore Embedded
Studio Project

In order to include the CLD BF70x CDC Library in a CrossCore Embedded Studio (CCES) project you
must configure the project linker settings so it can locate the library. The following steps outline how this

is done.

1. Copy the cld_bf70x_cdc_lib.h and cld_bf70x_cdc_lib.dlIb files to the project's src directory.

2. Open the project in CrossCore Embedded Studio.

3. Right click the project in the 'C/C++ Projects' window and select Properties.
If you cannot find the 'C/C++ Projects" window make sure C/C++ Perspective is active. If the
C/C++ Perspective is active and you still cannot locate the 'C/C++ Projects' window select
Window — Show View — C/C++ Projects.

4. You should now see a project properties window similar to the one shown below.

Navigate to the C/C++ Build — Settings page and select the CrossCore Blackfin Linker General
page. The CLD BF70x CDC Library needs to be included in the project's ‘Additional libraries
and object files' as shown in the diagram below (circled in blue). This lets the linker know where
the cld_bf70x_cdc_lib.dlb file is located.

7 Properties for CLD_CDC Uart Example v1 1 l = éj
type filter text Settings fe=1E 4 - v
Resource
Builders N
C/C++ Build (onflguratlo([[All configurations | '] ,Manage Configurations...

Build Varizbles
Discovery Options
Environment

i® Tool Settings | ¥l Processor Setting;l Build Step;l Build Artifactl Binary Parser;l [x] ErrorPar;Ers|

Language Mappings

Paths and Symbaols
Project References
Run/Debug Settings

(8 MISRA-C
(2 Run-time Checks
(% Profile-guided Optimization
@ Warning
(# Processor
@ Additional Options
4 B8 CrossCore Blackfin Linker
(2 General
(8 Preprocessor
(2 Elimination
@ Processor
(22 Libraries
(# Additional Options

Legging
Settings 4 8 CrossCore Blackfin Assembler Custom LDF (-T) "S{ProjDirPath}/src/app.ldf’ -
‘Warnings (5 General i
C/C++ General (%2 Preprocessor [C] Generate object trace ()
Code Analysis @ Additional Options [Cstrip debug information (-5)
Code Style 4 83 CrossCore Blackfin C/C++ Compiler [Strip all symbels {-s)
Decumentaticn (# General [Warn ence on undefined symbol (-warnonce)
- bt . PR
File Types 8 Preprocessor [7] Runtime initialization (-mem)
Indexer (# Language Settings

[] Generate symbaol map (-map)
[] Generate xref (-xref)
[] Save temporary files (-save-temps)

Indiwdually map functions and data items (-ip)

Library search directories (-L):

848

1,

Additional libraries and object files:

£ 5 §

"${ProjDirPathl/src/cld_bf0x_cdc lib.dlb"

Hover over an opticn to display its tooltip

[Restore Defaults] [Apply]

® [OK l [Cancel]

5. The 'Additional libraries and object files' setting needs to be set for all configurations (Debug,
Release, etc). This can be done individually for each configuration, or all at once by selecting the
[All Configurations] option as shown in the previous figure (circled in orange).

User Firmware Code Snippets

The following code snippets are not complete, and are meant to be a starting point for the User firmware.

For a functional User firmware example that uses the CLD BF70x CDC Library please refer to the CLD
CDC UART Example v1.3 project included with the CLD BF70x CDC Library. The CLD CDC Uart
Example v1.3 project implements a basic USB to Serial device using the CDC Abstract Model Class
Serial Emulation protocol.

main.c

void main (void)
{
Main States main state = MAIN STATE SYSTEM INIT;

while (1)
{
switch (main state)
{
case MAIN_STATE_SYSTEM_INIT:
/* Enable and Configure the SEC. */

/* sec_gctl - unlock the global lock */
pADI_SECO—>GCTL &= ~BITM SEC GCTL LOCK;

/* sec_gctl - enable the SEC in */
pADI_SECO->GCTL |= BITM SEC GCTL EN;

/* sec_cctl[n] - unlock */
pADI_SECO—>CB.CCTL &= ~BITM SEC CCTL LOCK;
/* sec_cctl[n] - reset sci to default x/
pADI_SECO—>CB.CCTL |= BITM SEC CCTL RESET;
/* sec_cctl[n] - enable interrupt to be sent to core */
pADI_SECO—>CB.CCTL = BITM SEC CCTL_EN;
pADI_PORTA—>DIR_SET = (3 << 0);

pPADI PORTB->DIR SET = (1 << 1);

main_state = MAIN_ STATE USER_INIT;
break;
case MAIN STATE USER INIT:
rv = user_cdc_init();
if (rv == USER CDC_ INIT_ SUCCESS)
{
main_state = MAIN STATE RUN;
}
else if (rv == USER CDC_INIT FAILED)
{
main_state = MAIN_STATE ERROR;
}

break;

case MAIN STATE RUN:
user_cdc_main();

break;

case MAIN STATE ERROR:

break;

46

user_cdc.c

/* CDC Notification Interrupt IN endpoint parameters. */
static CLD BF70x CDC Notification Endpoint Params user cdc notification ep params =

{

i

.endpoint number =1,
.max packet size full speed = 64,
.polling interval full speed =1,
.max packet size high speed = 04,

.polling interval high speed 4, /* Ims */

/* CDC Serial Data Bulk OUT endpoint parameters. */

static CLD Serial Data Bulk Endpoint Params user cdc serial data rx ep params

{

i

.endpoint number =2,
.max packet size full speed = 64,
.max_packet size high speed = 512,

/* CDC Serial Data Bulk IN endpoint parameters. */

static CLD Serial Data Bulk Endpoint Params user cdc_serial data tx ep params

{

i

.endpoint number =2,
.max packet size full speed = 64,
.max_packet size high speed = 512,

/* CLD BF70x CDC Library initialization data. */
static CLD BF70x CDC Lib Init Params user cdc init params =

{

.timer num
.uart num

CLD TIMER 0,
CLD_UART 0,

.uart baud = 115200,

.sclk0 = 100000000u,

.fp console rx byte = user cdc console rx byte,
.vendor_ id = 0x064Db,

.product_id = 0x0003,

/* Pointer to the serial data rx bulk endpoint parameters. */
.p_serial data rx endpoint params = &user cdc serial data rx ep params,
/* Pointer to the serial data tx bulk endpoint parameters. */
.p_serial data tx endpoint params = &user cdc serial data tx ep params,
/* Pointer to the CDC notification endpoint parameters. */
.p_notification endpoint params = &user cdc notification ep params,

/* Function called when serial data is received. */
.fp serial data received = user cdc_serial data received,
/* Function called when a CDC Send Encapsulated Command request is received */

.fp _cdc cmd send encapsulated cmd = user cdc _cmd send encapsulated cmd,
/* Function called when a CDC Get Encapsulated Command request is received */
.fp _cdc cmd get encapsulated resp = user cdc_cmd get encapsulated resp,
/* Function called when a CDC Set Line Coding request is received */

.fp cdc _cmd set line coding = user cdc_cmd_set line coding,

/* Function called when a CDC Get Line Coding request is received */

.fp cdc_cmd get line coding = user_cdc_cmd _get line coding,

/* Function called when a CDC Set Control Line request is received */

.fp _cdc _cmd set control line state = user cdc cmd set control line state,
/* Function called when a CDC Send Break request is received */

.fp cdc cmd send break = user cdc_cmd_send break,

47

.usb _bus max power = 0,

.support cdc network notification =1
.cdc_class_bcd version = 0x0120, /* CDC Version 1.2 */
.cdc_class control protocol code =0,

.device descriptor bcdDevice = 0x0100,

/* USB string descriptors - Set to CLD NULL if not required */
.p_usb_string manufacturer = "Analog Devices Inc",
.p_usb_string product "Example CDC",
.p_usb_string serial number = CLD NULL,

.p_usb_string configuration = CLD NULL,

.p_usb_string communication class_ interface = "BF707 CDC Interface",
.p_usb_string data class_interface = "BF707 CDC Data",
.usb_string language id = 0x0409, /* English (US) language ID */

.fp cld usb event callback = user cdc usb event,

48

typedef enum

{

USER _CDC_INIT SUCCESS = 0,
USER_CDC_INIT ONGOING,
USER_CDC_INIT FAILED,

} User CDC Init Return Code;

User CDC Init Return Code user_cdc_init (void)

{

}

static unsigned char user init state = 0;
CLD RV cld rv = CLD ONGOING;
User CDC Init Return Code init return code = USER CDC INIT ONGOING;

switch (user init state)

{

case 0:

/* TODO: add any custom User firmware initialization */

user init statet++;
break;
case 1:
/* Initialize the CLD BF70x CDC Library */
cld rv = cld bf70x_cdc_lib_init(&user cdc_init params);

if (cld rv == CLD SUCCESS)

{
/* Connect to the USB Host */
cld 1lib_usb_connect () ;

init return code = USER CDC INIT SUCCESS;
}
else if (cld rv == CLD FAIL)
{

init return code USER CDC INIT FAILED;

}
else
{
init return code = USER CDC INIT ONGOING;
}
}

return init return code;

void user_ cdc _main (void)

{

cld bf70x_cdc_lib main();

49

/* Function called when a Serial Data Bulk OUT packet is received */
static CLD USB Transfer Request Return Type
user_cdc_serial data_received (CLD USB Transfer Params * p_ transfer data)
{
p_transfer data->num bytes = /* TODO: Set number of Bulk OUT bytes to
transfer */
p_transfer data->p data buffer = /* TODO: address to store Bulk OUT data */

/* User Interrupt transfer complete callback function. */
p_transfer data->callback.usb out transfer complete =
user cdc_serial data out transfer done;
p_transfer params->fp transfer aborted callback = /* TODO: Set to User callback
function or CLD NULL */
p_transfer params->transfer timeout ms = /* TODO: Set to desired timeout or 0 to
disable the timeout. */

/* TODO: Return how the Bulk OUT transfer should be handled (Accept, Pause,
Discard, or Stall */
}

/* The function below is an example of the Bulk OUT transfer done callback
specified in the CLD USB Transfer Params structure. */

static CLD USB_Data_ Received Return Type user_cdc_serial data_ out_transfer done (void)

{

/* TODO: Process the received Bulk OUT transfer and return if the received data is

good (CLD USB DATA GOOD) or if there is an error (CLD_USB_DATA_BAD_STALL)*/
}

/* Function called when a Send Encapsulated Command request is received */
static CLD USB Transfer Request Return Type user_ cdc_cmd_send_encapsulated cmd
(CLD USB Transfer Params * p transfer data)
{
p_transfer data->p data buffer = /* TODO: address to store data */
p_transfer data->callback.usb out transfer complete =
user cdc send encapsilated cmd transfer complete;
p_transfer_data—>fp_transfer_aborEéd_Eéllbébk = /* TODO: Set to User callback
function or CLD NULL
*/
/* TODO: Return how the Control transfer should be handled (Accept, Pause,
Discard, or Stall */
}

/* Function called when the Send Encapsulated Command data is received */
static CLD USB Data Received Return Type
user_cdc_send_encapsilated_cmd_transfer complete (void)
{
/* TODO: Return if the received data is good (CLD USB DATA GOOD) or bad
(CLD USB_DATA BAD STALL) */

50

/* Function called when a Get Encapsulated Response request is received */
static CLD USB Transfer Request Return Type user cdc_cmd get_encapsulated resp
(CLD USB Transfer Params * p transfer data)
{
p_transfer data->num bytes = /* TODO: Set to size of response */
p_transfer data->p data buffer = /* TODO: address to source the response data */
p_transfer data->callback.usb in transfer complete =
user cdc get encapsulated resp transfer complete;
p_transfer_data—>fp_transfer_aborféd_ééllﬁéck = /* TODO: Set to User callback
function or NULL */
/* TODO: Return how the Control transfer should be handled (Accept, Pause,
Discard, or Stall */

/* Function called when a Get Encapsulated Response has been transmitted */
static void user cdc_get encapsulated resp transfer complete (void)
{
/* TODO: The Get Encapsulated Response data has been sent to the Host, add any
User functionality. */

}

/* Function called when a Set Line Coding Request has been received*/
CLD USB Data_ Received Return Type user_cdc_cmd set line coding
(CLD CDC Line Coding * p line coding)

{

if (/* TODO: Check if CDC Line Coding is valid */)

{

/* TODO: Save the requested CDC Line Coding and process it accordingly */
return CLD USB DATA GOOD;
}
else

{
return CLD USB DATA BAD STALL;

}

/* Function called when a Get Line Coding Request has been received*/
CLD_RV user_cdc_cmd get line_ coding (CLD_CDC_Line_ Coding * p_line_coding)
{
if (/* TODO: Check if Get CDC Line Coding request is valid */)
{
/* TODO: Copy the current CDC Line Coding into the p line coding structure */
return CLD SUCCESS;
}
else

{
return CLD FAIL;

51

/* Function called when a CDC Set Control Line State Request has been received*/
CLD USB Data Received Return Type user_cdc_cmd set control line_ state

(CLD_CDC Control Line State * p_control_liné;state)

{

if (/* TODO: Check 1if CDC Control Line state 1is valid */)

{

/* TODO: Process the CDC Control Line State */

return CLD USB DATA GOOD;

}
else

{
return CLD USB DATA BAD STALL;

}

/* Function called when a CDC Send Break Request has been received*/
static void user cdc_cmd send break (unsigned short duration)

{

/* TODO: Process the requested break duration */

}

static void user_ cdc_usb_event (CLD_USB Event event)
{
switch (event)
{
case CLD USB CABLE CONNECTED:
/* TODO: Add any User firmware processed
break;
case CLD USB CABLE DISCONNECTED:
/* TODO: Add any User firmware processed
disconnected. */
break;
case CLD USB ENUMERATED CONFIGURED:
/* TODO: Add any User firmware processed
enumerated. */
break;
case CLD USB UN CONFIGURED:
/* TODO: Add any User firmware processed
is set to 0.%*/
break;
case CLD USB BUS_ RESET:
/* TODO: Add any User firmware processed
break;

when

when

when

when

when

static void user_cdc_console_rx byte (unsigned char byte)

{

/* TODO: Add any User firmware to process data received

USB cable is connected. */

USB cable 1is

Device has been

Device USB Configuration

USB Bus Reset occurs. */

by the CLD Console UART.*/

52

/* The following function will transmit the specified memory using
the Serial Data Bulk IN endpoint. */
static void user cdc_transmit_serial_data_in data (void)

{

static CLD USB Transfer Params transfer params;

transfer params.num bytes = /* TODO: Set number of Bulk IN bytes */
transfer params.p data buffer = /* TODO: address Bulk IN data */
transfer params.callback.usb_in transfer complete = /* TODO: Set to User callback

function or NULL */;

transfer params.callback.fp transfer aborted callback = /* TODO: Set to User

callback function or
NULL */;
transfer params.callback.transfer timeout ms = /* TODO: Set to desired timeout in

milliseconds or 0 to disable the
timeout*/;

if (cld bf70x_cdc_lib_transmit serial data(&transfer params) ==

{

CLD_USB_TRANSMIT SUCCESSFUL)

/* Bulk IN transfer initiated successfully */

}
else

{

/* Bulk IN transfer was unsuccessful */

53

	Disclaimer
	Introduction
	USB Background
	CLD BF70x CDC Library USB Enumeration Flow Chart
	CLD BF70x CDC Library Bulk OUT Flow Chart
	CLD BF70x CDC Library Bulk IN Flow Chart

	CDC Abstract Control Model Background
	CDC Notifications Interrupt IN Endpoint
	Network Connection Notification
	Response Available Notification
	Serial State Notification

	CDC Abstract Control Model Control Endpoint Requests
	Send Encapsulated Command (required)
	CLD CDC Send Encapsulated Command Flow Chart

	Get Encapsulated Command (required)
	CLD BF70x CDC Library Get Encapsulated Command Flow Chart

	Set Line Coding (optional)
	CLD BF70x CDC Library Set Line Coding Flow Chart

	Get Line Coding (optional)
	CLD BF70x CDC Library Get Line Coding Flow Chart

	Set Control Line State (optional)
	CLD BF70x CDC Library Set Control Line State Flow Chart

	Send Break (optional)
	CLD BF70x CDC Library Send Break Flow Chart

	Dependencies
	Memory Footprint
	CLD BF70x CDC Library Scope and Intended Use
	CLD CDC Uart Example v1.3 Description
	CLD BF70x CDC Library API
	cld_bf70x_cdc_lib_init
	Arguments
	Return Value
	Details

	cld_bf70x_cdc_lib_main
	Arguments
	Return Value
	Details

	cld_bf70x_cdc_lib_transmit_serial_data
	Arguments
	Return Value
	Details

	cld_bf70x_cdc_lib_send_network_connection_state
	Arguments
	Return Value
	Details

	cld_bf70x_cdc_lib_send_response_available
	Arguments
	Return Value
	Details

	cld_bf70x_cdc_lib_send_serial_state
	Arguments
	Return Value
	Details

	cld_bf70x_cdc_lib_resume_paused_serial_data_transfer
	Arguments
	Return Value
	Details

	cld_bf70x_cdc_lib_resume_paused_control_transfer
	Arguments
	Return Value
	Details

	cld_lib_usb_connect
	Arguments
	Return Value
	Details

	cld_lib_usb_disconnect
	Arguments
	Return Value
	Details

	cld_time_get
	Arguments
	Return Value
	Details

	cld_time_passed_ms
	Arguments
	Return Value
	Details

	cld_console
	Arguments
	Return Value
	Details

	Using the ADSP-BF707 Ez-Board
	Connections:
	Note about using UART0 and the FTDI USB to Serial Converter

	Adding the CLD BF70x CDC Library to an Existing CrossCore Embedded Studio Project
	User Firmware Code Snippets
	main.c
	user_cdc.c

